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Abstract

The recently described FINGAR genetic algorithm method for NMR refinement [D.A. Pearlman (1996)J. Biomol.
NMR, 8, 67–76] has been extended so that it can be used to detect problem restraints in an NMR-derived set
of data. A problem restraint is defined as a restraint in a generally well-behaved set where the associated target
value is in error, due to inaccuracies in the data, misassignment, etc. The method described here, FINGAR.RWF,
locates problem restraints by finding those restraints that, if removed from the data set, result in a disproportionate
improvement in the scoring function. The method is applied to several test cases of simulated data, as well as to
real data for the FK506 macrocycle, with excellent results.

Introduction

Typically, determination of a structure from NMR
data proceeds through a three-step process (Wüthrich,
1990): data collection, followed by assignment of the
data and conversion into specific structural restraints
(distances, torsions), and finally generation of one or
more three-dimensional structures from the restraints.
In order to generate good, reliable 3D structures dur-
ing the third phase (refinement), it is necessary that
one have an accurate, properly assigned set of NMR-
derived restraints. The availability of such a restraint
set is critically dependent on steps one and two. Ex-
perimental errors during data collection can lead to
inaccuracy in the distance or angle associated with a
particular atom sequence. Misassignment can result
in an NOE-derived distance being associated with the
wrong pair of atoms. Inclusion of even a small number
of improperly defined restraints can lead to refine-
ment that either fails to converge, or else converges
to a distorted structure (Zhao and Jardetzky, 1994;
Adler, 1996). In practice, the initial restraint set pro-
duced in steps one and two will usually contain several
such problem restraints, which need to be identified
and either corrected or removed from the data set (by
reanalyzing data from steps one and two) before struc-

ture generation can properly be completed. The rapid
identification of these problem restraints during phase
three is the focus of this work. The issues related to
steps one and two have been reviewed elsewhere (Bax,
1989; Clore and Gronenborn, 1991; Hoch, 1991; Bain
et al., 1994).

Traditionally, refinement has been performed using
either distance geometry (Crippen and Havel, 1988) or
a molecular dynamics (MD) based approach (Brunger
and Karplus, 1991). In both cases, the goal is to pro-
duce a structure, or ensemble of structures, that best
satisfies the restraint set while maintaining reasonable
covalent and non-bonded interactions. Unfortunately,
when problem restraints are included in the restraint
set, it is frequently difficult or impossible to examine
the results from refinement and determine which re-
straints are leading to poor results. Because numerous
restraints can apply to the same region of a mole-
cule, the effects of a bad restraint can be manifest
as increased restraint violations among numerous re-
straints and can potentially spread far from the atoms
that represent the actual problem. (Laskowski et al.,
1996) NMR-derived structure determination therefore
typically entails a trial-and-error process of examining
the refined structures, guessing if any restraints are
in error, removing or correcting these restraints, and
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re-refining. When a reasonably low energy set of con-
formations can acceptably explain the restraint data, it
is assumed that the restraint set is acceptable and the
refinement cycle is terminated (Brunger and Nilges,
1993).

This procedure is unsatisfactory on three counts.
First, it is time-consuming and inefficient. Secondly,
it can be particularly difficult to pinpoint problem re-
straints when several are included. And finally, there
is no absolute set of criteria against which the results
of any particular refinement can be compared to de-
termine if the set still contains problem restraints. For
example, a seemingly well-refined structure can actu-
ally be moderately high in energy and distorted, even
though the restraints appear reasonably well satisfied
and there are no obvious geometric problems (Van
Gunsteren, 1990).

For these reasons, it is desirable to have an au-
tomated objective method for helping to flag bad
restraints during refinement. In essence, what is de-
sired is a method that would check for restraints that
– if removed from the refinement set – result in an
inordinately large reduction in the energetic scoring
function for the system. The method should be able to
flag bad restraints even when several are present in the
data set. Standard distance geometry and MD-based
refinement methods do not easily lend themselves to
this type of analysis. In principle, one could systemat-
ically remove all possible combinations of restraints,
rerefine for each reduced data set, and compare the
results. But a brute force approach such as this quickly
becomes prohibitively time-consuming, especially if
several bad restraints are included in the data set.

Recently, we described a powerful new genetic
algorithm (GA) based method, FINGAR, for refine-
ment of structures from NMR-derived data (Pearlman,
1996). The essence of FINGAR is that a basis set of
potential molecular conformations is generated, and
FINGAR refines the relative weights of these confor-
mations in order to optimize the following function

Etot = Kpot <Epot> +KbondEbond

+ KJEJ +KσEEσE (1)

<Epot> is the weighted average of the energy
over the ensemble,Ebond is derived from the differ-
ences between the weighted average distances in the
ensemble and the target NOE-derived distances,EJ
is derived from the differences between the weighted
averageJ-coupling values for the ensemble and the
target NMR-derivedJ-coupling values, andEσE is a
term that ensures the rms fluctuation of the weighted

averaged potential energy is physically reasonable.
The ensemble of conformations that serve as a ba-
sis set can be generated using distance geometry or
unrestrained or restrained molecular dynamics at the
relevant temperature.

Key advantages of the FINGAR approach over tra-
ditional NMR refinement methods include: FINGAR
can fit the NMR data without introducing restraint-
based distortions into the molecule; FINGAR easily
allows for systems where the NMR data reflects mul-
tiple conformations; the results from FINGAR are a
set of individual basis set weights which enumerate
exactly which conformations are most important; and
FINGAR is very fast. The superiority of FINGAR
refinement to traditional refinement for several small
molecule test cases has been demonstrated (Pearlman,
1996).

These advantages and features coupled with the
intrinsic strength of the genetic algorithm as an op-
timizing technique suggest that FINGAR might be
extended to also address the issue of flagging bad
restraints. To extend FINGAR in this direction, we
have introduced a new set of variables into refinement.
These are the relative weights,Kx(i), of the individ-
ual restraint terms contributing toEtot. In doing so,
we add NREST additional variables into refinement,
corresponding to the NREST NMR-derived restraints.
The contribution toEtot from restrainti is given by

Erest= Kx(i)(<x(i)> −xNMR(i))
2 (2)

where<x(i)> is the weighted averaged value of the
parameter (rNOE, 3J ) for restraint i over the basis
set ensemble, andxNMR(i) is the NMR-derived target
value for this restraint.

Clearly, if no other terms are added toEtot then
all values ofKx(i) will tend to zero, since this will
minimize the otherwise positiveErest. To counteract
this effect, so that only a minimal number ofKx(i)
substantially decrease, additional terms are added to
Etot which disfavor reductions in the{Kx(i)} unless
these reductions result in a substantial improvement in
the overall fitness functionEtot . We term the resulting
procedure, where both the basis set weightsw(i) and
the restraint weightsKx(i) can vary, FINGAR.RWF
for ‘FIt NMR data using a Genetic Algorithm with
Restraint Weight Floating’.

FINGAR.RWF has been applied to several sets of
synthesized test data. The program has also been ap-
plied to the refinement of FK506 using an experimen-
tally derived data set (Lepre et al., 1992). FK506 is a
107 atom macrocyclic inhibitor of FKBP-12 (Rosen
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and Schreiber, 1992). As will be seen, the method
is very capable of flagging problem restraints, even
when a data set contains several such restraints or is
relatively large.

Methods

Refinements were performed using a version of the
FINGAR program modified to allow restraint weight
floating, FINGAR.RWF. FINGAR has been described
previously (Pearlman, 1996). Briefly, FINGAR refines
the relative weights,w(i), for a set of basis structures
using a genetic algorithm to obtain a minimum value
for the fitness function in Equation 1. The various
terms in the fitness function are calculated as:

<Epot>=
∑

NBASIS

w(i)Epot(i) (3)

Ebond=
∑

NRESTr

Kr(i)(<r(n)> −rNMR(n))
2 (4)

EJ =
∑

NRESTj

KJ(i)(<J (n)> −JNMR(n))
2 (5)

EσE = (σ(Epot)− σ(Epot0))
2 (6)

Epot(i) is the potential energy of basis set (i).
NBASISis the number of basis sets.NRESTrand
NRESTjare the numbers of NMR-derived distance
and torsional restraints, respectively.Kr(i) is the force
constant for theith distance terms.KJ(i) is the force
constant for theith J-coupling term.< r(n) > is the
weighted average value of restraintn over all basis sets
i:

<r(n)>= (
∑

NBASIS

w(i)r(i, n)−N)−1/N (7a)

wherer(i, n) is the value of distance restraintn for
basis seti. N is typically 6. The reciprocal weight-
ing reflects the relationship between the measured
NOE-derived distancerNMR(n) and the experimental
ensemble of distances contributing torNMR(n) (Wag-
ner and Wüthrich, 1979; Tropp, 1980).<J(n)> is the
weighted average value ofJ-coupling restraintn over
all basis setsi:

<J(n)>=
∑

NBASIS

w(i)J (i, n) (7b)

J (i, n) is the value of thenth restrainedJ for basis set
i. J (i, n) can be related to the underlying torsion an-
gle τ through a Karplus relationship (Karplus, 1959).

JNMR(n) is the experimentally measured3J coupling
constant. The variables in FINGAR refinement are the
basis set weightsw(i).

FINGAR.RWF differs from FINGAR in that we
also allow the weight factors for the individual re-
straints to vary during refinement. That is,Kr(i) and
KJ(i) in Equations 4 and 5 are made additional vari-
ables of the refinement. The expressions in Equa-
tions 4 and 5 are always≥ 0, so if the valuesKr(i)
andKJ(i) were simply allowed to float, they would al1
tend towards 0. To counteract this and instead focus
only on potentially ‘problem’ restraints, two terms are
added to the expression in Equation 1:

Eksum= Eksum

∑
NREST

(Kx(i)/Kx0(i) − 1)2 (8)

ensures that the total number of restraints with reduced
values ofKx(i) is modest.Kx(i) represents the set of
force constants{Kr(i),KJ(i)}, andNRESTrepresents
the sum ofNRESTrandNRESTj.Kx0(i) is the starting
(input) value ofKx(i).Kksumis a weighting coefficient.
The second term,

Ekzer=


Kkzer((NREST− ∑

NREST
Kx(i)/Kx0(i))− S0)

2

for NREST− ∑
NREST

Kx(i)/Kx0(i) > S0

0 for NREST− ∑
NREST

Kx(i)/Kx0(i) ≤ S0

(9)

ensures that the number of force constantsKx(i) that
tend towards zero will be no greater than roughlyS0.
If no force constants are reduced, i.e.Kx(i) = Kx0(i)
for all restraints, then

∑
NREST

Kx(i) = Kx0(i) = NREST.

Thus,NREST− ∑
NREST

Kx(i)/Kx0(i) gives a rough ap-

proximation of the number of restraints whose force
constants have appreciably decreased during refine-
ment. When this number is greater thanS0, the har-
monic penalty function is applied. The user specifies
Kksum,Kkzer andS0. The effects of the terms in Equa-
tions 8 and 9 are complementary. The total fitness
function is then given by

Etot = Kpot <Epot> +KbondEbond+KJEJ
+ KσEEσE +Eksum+Ekzer (10)

Changes in the restraint weights can be performed
either continuously, or intermittently and either con-
current with changes in the basis weights or in a leap-
frog fashion with those changes. In the simulations
reported here, every 30 consecutive GA generations
consisted of 15 generations where only the basis set
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weights changed followed by 15 generations where
both basis set weights and restraint weights changed.
We have found this type of leap-frogging with respect
to the restraint weights is more efficient and less prone
to getting stuck in local minima than refinement where
both basis set and restraint weights vary at every step.

Two types of tests have been performed to charac-
terize the performance of FINGAR.RWF in flagging
problem restraints. In the first, the ‘exact test’, refine-
ment is performed against a set of restraints which are
generated from a randomly assigned set of weights and
a fabricated set of basis sets. For the ‘exact test’, we
begin by generating a series of basis sets. A basis set
is defined by the values for the restrained variables
of that set (e.g. a list of distances and3J coupling
constants). Here, values were randomly assigned from
the interval [2.5,5.5]Å to represent restrained distances
(for simplicity, noJ-coupling restraints were used in
these tests). To each member of the simulated basis set,
a weight is then randomly assigned. These are initially
chosen on the interval [0,1], and then 95% of the basis
set weights are reduced by a random factor between 10
and 200. After assignment, the sum of weights is nor-
malized to 1.0. This approximates real data, where the
ensemble is typically dominated by a small subset of
the conformations in the basis set. Potential energies
are assigned to each basis set, based on the Boltzmann
factor that would result in the assigned weight. A
modest amount of noise is then introduced to the syn-
thesized restraint set, again to simulate real data. To
introduce this noise, the target value of each restraint
is translated by a distanceTreschosen randomly from a
Gaussian distribution centered on a specified valueTne
with a standard deviation ofσne. A ‘flat well’ region is
allowed for each restraint,±Tfw, whereTfw is a spec-
ified fraction of the standard deviation in the restraint
σr calculated from the weighted distribution of basis
sets. Finally, a specified number of restraints,Nerr, are
chosen at random from the restraint set and these are
translated by a distance+Terr or−Terr. These are the
‘problem’ restraints, which the simulation will attempt
to identify. Including the errors, the restraints are still
required to fall within the interval [2.5,5.5]Å. If the
error introduced to a restraint would place the target
value of the restraint outside this range, the sign of the
error is reversed before addition.

The second set of simulations run to characterize
FINGAR.RWF were of the ‘experimental test’ variety.
In these, a set of experimentally derived restraints for
the FK506 macrocycle are used. The basis set is gener-
ated using both unrestrained and restrained molecular

dynamics, followed by clustering, as previously de-
scribed (Pearlman, 1996). Minimization and dynamics
were performed using the program Amber/Sander,
version 4.1 (Pearlman et al., 1995), and energies
were evaluated using a previously described force field
(Pearlman, 1994a,b).Nerr restraints are chosen at ran-
dom from the restraint set and the upper bound for
each of these is reduced by the specified distanceTerr

(subject again to a minimum distance of 2.5 Å). Note
that the experimental data set used is characterized by
restraints that only have an upper bound specified (re-
sulting in a half-harmonic restraint potential), which
is why the restraint distance is always reduced in this
case.

Each test simulation consists of a suite of 100
FINGAR.RWF runs. For the ‘exact test’ simulations,
each run corresponds to a completely new set of simu-
lated basis sets and restraints. For the ‘experimental
test’ simulations, each run corresponds to a differ-
ent randomly chosen set of restraints to which errors
are applied. The initial values{Kx0(i)} are all set to
1.0 kcal/mol. At the end of each run in a suite, the
refined values of{Kx(i)} are examined. Any restraint
with Kx(i) ≤ 0.70 kcal/mol (the tag threshold,Ktag)
is tagged as a potential problem restraint. This value
of Ktag was empirically chosen to optimize the cor-
rect flagging of bad restraints while minimizing the
improper tag rate. The list of tagged restraints is
compared to actual list of error restraints. The num-
bers of properly tagged error restraints and improperly
tagged non-error restraints are stored. At the end of
the 100 run suite, the averaged numbers of properly
tagged error and improperly tagged correct restraints
are reported.

All GA simulations have been run with a popu-
lation of 500 members and for 180 generations. For
each,Kpot = 1.0, Kbond = 25.0, andKσE = 1.0.
For each GA mutation phase, 0.50% of the codons in
the system (basis set weight and/or restraint weight
variables), randomly chosen, are allowed to mutate.
Changes in variables are restricted to multiples of
0.001. During replication, members of the population
are replicated based on Boltzmann factors evaluated
using Equation 10 atT = 300 K, and a maximum
of 20% of the system can be replicated from any sin-
gle parent. Each FINGAR refinement simulation takes
approximately 2.4 min on an SGI R10000 workstation.

To compare the FINGAR.RWF approach to tra-
ditional MD-based refinement approaches in flagging
problem restraints, a series of MD simulations has also
been performed for FK506 using the experimentally-
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derived 66 NOE restraint set. By direct analogy to the
FINGAR.RWF runs, a set ofNerr = 5 restraints are
randomly selected for each simulation and errors of
magnitudeTerr. are applied to these restraints. Each
MD test consists of a suite of 100 individual 400 ps
simulations with different randomly selected sets of
Nerr = 5 restraints to which errors havc been applied.
At the end of each MD run, those restraints whose
contribution to the total energy is≥1.0 kcal/mol are
tagged as bad. The numbers of properly and im-
properly tagged restraints are averaged over all 100
independent MD simulations in a suite to give av-
eraged tag rates for that suite. Each MD simulation
consists of 400 ps of sampling at a temperature of
300 K, in vacuo, using a timestep of 2 fs. The force
constantKr used in these simulations is 20 kcal/mol.
MD test suites have been generated for a variety of
values ofTerr, again by analogy to the ‘experimental
test’ FINGAR.RWF tests. All test suites have been
performed twice, using each of two refinement pro-
tocols: standard refinement, with restraint penalties of
the form

Edistance=
∑

measured NOEs

Kr(rMD − rNOE)
2 (11)

and time-averaged refinement (Torda et al., 1989;
Pearlman and Kollman, 1991), with restraint penalties
of the form

Edistance=
∑

measured NOEs

Kr(<r
−6
MD>

−1/6 −rNOE)
2

(12)

rMD is the value of the restrained NOE distance at each
step of MD, and the ‘<>’ notation indicates we deter-
mine the time-averaged value of the quantity enclosed
by these brackets over an ensemble of steps during the
MD simulation. An exponential decay function (Torda
et al., 1990) with a time-constantτ of 10 ps is used
so that the average in Equation 12 is weighted towards
the more recent MD steps.

Results

As an initial test of the FINGAR.RWF method, a se-
ries of ‘exact test’ simulations were performed where
the magnitude of the error in the problem restraints
was varied. Eight separate sets of 100 runs were
performed corresponding to error in the problem re-
straints of magnitudeTerr = 0.25→ 2.00 Å, in 0.25 Å

Figure 1. Ability of FINGAR.RWF to flag problem restraints, as
a function of the magnitude (Å) of the error in those restraints,
Terr. Results are for ‘exact test’ simulations on synthesized data
(see text). The curve in the upper frame represents the fractions
of the problem restraints tagged (Kr(i) ≤ 0.70 kcal/mol) dur-
ing the refinement. The curve in the bottom frame represent the
fractions of the good restraints incorrectly tagged as problem re-
straints. All data are averages over 100 separate simulations with
different synthesized data and different randomly chosen problem
restraints.Kkzer = 0 for these simulations. All simulations were
performed with 100 basis sets, 100 distance restraints,Nerr = 5,
andKksum= 3.0 kcal/mol.

increments (and either+ or − sign). 100 fabricated
basis sets and restraints were used, and the number
of randomly chosen problem restraints,Nerr was 5.
For the remaining restraints, the magnitude of the error
(‘noise’) in the target value,Tres, was chosen randomly
from a Gaussian distribution centered on 0.5σi with a
standard deviation of 0.5σi , subject to a maximum
of Tres = 0.5 Å. Tres was randomly assigned either
a + or − sign after the magnitude was chosen. For
each restraint a ‘flat well’ region of±Tfw = 0.5 σ

was used. Thus, a realistic set of data is simulated,
where even the non-problem restraints will contain a
modest amount of error and will be associated with a
flat-welled restraint that reflects this error. For these
simulations,Kksumwas set to 3.0 kcal/mol, andKkzer
was set to 0 (Equations 8–9). Double-sided wells were
used for all restraints.

The results of these simulations are presented in
Figure 1. Expectedly, the ability to tag the problem
restraints increases with the amount of error in these
restraints. For small values ofTerr, the error in the
problem restraints is comparable to the noise in the
remaining restraints, which accounts for the relative
inability to identify the problems. But the tag rate in-
creases rapidly with the magnitude of the error, and
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when the error is 1.0 Å, the tag rate is well over 80%.
As Terr approaches 2.0 Å, the tag rate is essentially
100%. Regardless of the value ofTerr, the rate at which
non-problem restraints are incorrectly tagged remains
an acceptably low< 1%.

Having demonstrated FINGAR.RWF quite capa-
ble of tagging problem restraints, two additional sets
of simulations were performed to determine how the
program’s ability to flag these restraints varies with the
size of the data set and with the number of problem
restraints in the system. Conditions for these sim-
ulation series were as described above, with these
changes: (1) The magnitude of the error in the problem
restraints was fixed at 1.0 Å; (2) Ten separate simula-
tions were performed corresponding to, respectively,
Nerr = 1,2,3,4,5,8,10,13,16 and 20 randomly
chosen ‘error restraints’; (3) Two simulation series
were performed. In the first, the number of fabricated
basis sets/restraints was 100, as before. In the second,
the number of fabricated basis sets/restraints was 400.
As in the previous simulations, aσ-dependent amount
of error was added to the remaining (non-problem) re-
straints to reflect the error inherent in all restraints of
a real data set.

The results of these two series of simulations are
presented in Figure 2. The thin solid lines in the upper
and lower frames represent the average fractions of
problem restraints properly tagged and non-problem
restraints improperly tagged, respectively, during the
refinement series where the numbers of basis sets and
restraints were 100. The dashed lines in the upper and
lower frames represent the analogous results for re-
finement series where the numbers of basis sets and
restraints were 400. As can be seen, for both simula-
tion sets, there is only a very modest decrease in the
ability of FINGAR.RWF to tag the bad restraints as
the number of these restraints increases. The tagging
rate remains above 80% in all cases. The tagging rate
is actually higher for the larger data set simulations,
probably reflecting the fact that for these simulations,
there is more total data defining the correct answer. At
any rate, FINGAR.RWF is certainly as capable of find-
ing problem restraints in large data sets as small. The
fractions of problem restraints mis-flagged are almost
identical for the 100 and 400 basis set/restraint sys-
tems. In both cases, the fraction remains below 1.5%
for all values ofNerr. There is a small increase in the
improper tag rate withNerr.

The ability of FINGAR to flag problem restraints
can be made even better by decreasingKksum, the
weighting constant for the term that acts to minimize

Figure 2. Ability of FINGAR.RWF to flag problem restraints, as
a function of the number of randomly chosen problem restraints
(Terr = −1.0 Å) in the data set. Results are for ‘exact test’
simulations on synthesized data (see text). The curves in the up-
per frame represent the fractions of the problem restraints tagged
(Kr(i) ≤ 0.70 kcal/mol) during the refinement. The curves in the
bottom frame represent the fractions of the good restraints incor-
rectly tagged as problem restraints. All data are averages over 100
separate simulations with different synthesized data and different
randomly chosen problem restraints.Kkzer = 0 for these simu-
lations. Thin solid lines: runs with 100 basis sets, 100 distance
restraints andKksum= 3.0 kcal/mol; thin dashed lines: runs with
400 basis sets, 400 distance restraints andKksum= 3.0 kcal/mol;
thick solid lines: runs with 400 basis sets, 400 distance restraints
andKksum= 1.0 kcal/mol.

the number of tagged (weight reduced) restraints. The
thick solid curves in the upper and lower frames of
Figure 2 correspond to a simulation withKksum =
1.0 kcal/mol and 400 fabricated basis sets/restraints.
By loweringKksum, we have been able to increase the
tagging rate for bad restraints by several percent, to
well over 90%. The cost of this is that the percentage
of restraints improperly tagged has increased to 6%
from around 1%.

Having demonstrated that the method can very ef-
fectively tag problem restraints for a simulated data
set, a second set of simulations was then carried out to
determine how the method performs with a ‘real’ data
set. The ‘experimental test’ protocol described above
was used. The restraint set consisted of 66 properly as-
signed, low error distances derived for FK506 (Lepre
et al., 1992). Each restraint was defined by only an
upper distance bound. For each simulation, restraints
from this set were selected at random, and the target
distances of these restraints were reduced byTerr. A
total of 16 sets of 100 runs each were performed, cor-
responding to, respectively,Terr = −0.25 to−4.00 Å,
in increments of 0.25 Å. By performing a series of
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Figure 3. Ability of FINGAR.RWF to flag problem restraints, as
a function of the magnitude of the error (Å) in the problem re-
straints. Results are for ‘experimental test’ simulations using an
NMR-derived set of 66 distance restraints for the FK506 macro-
cycle. For each simulation a specified error−Terr is applied to the
target values of a randomly chosen set of restraints. The curves in
the upper frame represent the fractions of the problem restraints
properly tagged during the refinement (Kr(i) ≤ 0.70 kcal/mol).
The curves in the lower frame represent the fractions of the good
restraints incorrectly tagged as problem restraints. All data are aver-
ages over 100 separate simulations with different randomly chosen
problem restraints.Kksum= 12.0 kcal/mol,Kkzer= 10.0 kcal/mol
and S0 = Nerr for these simulations. Solid lines: runs with the
number of randomly chosen problem restraintsNerr = 1; dashed
lines: runs withNerr = 5.

simulations with varying values ofTerr, the ability to
tag problem restraints can be correlated with the mag-
nitude of the error. Two full arrays of 16 simulation
sets were performed, one in which only one restraint
was reduced (Nerr = 1), and a second in which five re-
straints were reduced (Nerr = 5). For both,S0 was set
to Nerr (Equation 9),Kksumwas set to 12.0 kcal/mol,
andKkzer was set to 10.0 kcal/mol (values found, by
trial and error, to yield reasonable results).

Figure 3 presents the results of the experimen-
tal test simulations. Data from the simulations with
Nerr = 1 are presented in thin lines, and those
from Nerr = 5 are presented in dashed lines. Again,
the upper frame represents the fractions of problem
restraints correctly tagged, while the bottom frame
represents the fractions of non-problem restraints im-
properly tagged. Predictably, the ability to tag problem
restraints increases substantially with the magnitude
of the error in the problem restraints, reaching over
60% for restraints in error by 2.0 Å. At the same time,
the tendency to mistakenly tag good restraints – while
larger than in the exact case – remains modest (2–
8%). While the positive tag rate is smaller here than

Figure 4. Ensemble averaged fitness function valueEtot (kcal/mol;
upper frame) and rms restraint violations (Å; lower frame) as a
function of the magnitude of the error in the problem restraints.
Simulation conditions are the same as in Figure 2, and the thin solid
and dashed lines represent data for the same simulations as in that
figure. Thin solid lines: runs with the number of randomly chosen
problem restraintsNerr = 1; thin dashed lines: runs withNerr = 5;
thick solid lines: runs where the restraint weights{Kx(i)} were not
allowed to change.

in the exact test case above, this is to be expected. The
restraints in this case are specified by only an upper
bound. If some of the restraints are looser than they
need to be (and certainly some will be), then we will
observe no effect from reducing those restraints until
the target value has been sufficiently reduced. If the
‘true’ restraint distance is near 2.5 Å or smaller, which
is our self-imposed lower bound on a restraint, then
of course we will never tag the restraint as a problem.
An idea of the percentage of restraints that will never
get tagged as problems can be ascertained by refer-
ence again to Figure 3. WhenTerr is 4.0 Å, any of the
problem restraints will be set atr0 = 2.5 Å. The frac-
tion of hits in these cases is essentially the maximum
percentage we can hope to find. As can be seen, this
maximum is roughly 80%.

Figure 4 presents the averaged values ofEtot

(Equation 10) and the average rms restraint violation
after accounting for changes in theKx(i), for the refine-
ments above (thin solid and dashed curves). These are
compared with the analogous values in the case where
no restraint weights are allowed to change (thick solid
curves). The upper frame represents the total fitness
function score (Etot), while the bottom frame repre-
sents the rms restraint violation. As is seen, the total
fitness score and restraint violations increase substan-
tially with the magnitude of the errors when restraint
weights are not allowed to change. When these re-
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straint weights are allowed to float, however, we find
that the averaged energy and restraint violations in-
crease only modestly with the violations – evidence
that the refinement is indeed isolating and removing
(by reduction ofKx(i)) problem restraints. These plots
also indicate that the less than 100% hit rate for prob-
lem restraints is not arising from a failure to identify
restraints which negatively impact refinement. That is,
the sub-100% hit rate is not due to inadequacies in
the search algorithm. Rather, this sub-100% hit rate
reflects the fact that there are certain problem restraints
that can be left in the data set without appreciably
changing the target function which is used to evaluate
the quality of refinement.

Clearly, FINGAR.RWF can efficiently tag bad re-
straints. But how much better is FINGAR.RWF at
pinpointing bad restraints than traditional MD refine-
ment methods? Specifically, if we attempt to identify
bad restraints in the traditional manner – by examining
the restraint violations at the end of an MD simula-
tion – how well will we do relative to FINGAR.RWF?
To answer this question, suites of 100 independent
MD simulations have been run for FK506 using the
same set of 66 experimentally derived NOE restraints
as before. Each suite corresponds toNerr = 5 ran-
domly chosen restraints and a fixed value ofTerr in
the range [0.25,4.0]Å, in direct analogy with the FIN-
GAR.RWF ‘experimental test’ simulations. Errors are
applied toNerr randomly chosen restraints in each
simulation. At the end of each refinement, restraints
whose contributions to the energy are≥1.0 kcal/mol
are tagged as ‘problems’. A restraint force constant
Kr of 20.0 kcal/mol is used for all MD simulations.
Other control parameters for the MD simulations are
described under the Methods section.

Figure 5 presents the tagging efficiencies of the
MD simulations as a function ofTerr. This figure
should be compared to the dashed line plots of Fig-
ure 3, which present the analogous data for the FIN-
GAR.RWF runs withNerr = 5. In Figure 5, the solid
lines represent data from standard MD refinement, and
the dashed lines represent data from time-averaged re-
finement. It is immediately apparent that the proper
tagging rate using MD is considerably lower (a max-
imum tagging rate of 0.6 versus a rate of 0.8 using
FINGAR.RWF), while at the same time the improper
tagging rate is roughly twice as large (note the differ-
ent scales for the lower plots in Figures 3 and 5). In
other words, MD-based tagging is considerably less
reliable and efficient than FINGAR.RWF. In addition,
if the tag energy threshold is increased to reduce the

Figure 5. Ability of molecular dynamics (MD) to flag problem
restraints, as a function of the magnitude of the error (Å) in the prob-
lem restraints. Results are for simulations using an NMR-derived
set of 66 distance restraints for the FK506 macrocycle, and are
analogous to the dashed-line simulations presented in Figure 3,
but using MD. For each simulation a specified error−Terr is ap-
plied to the target values of a randomly chosen set ofNerr = 5
restraints. A restraint is tagged as ‘bad’ if its contribution to the
restraint energy at the end of refinement is≥1.0 kcal/mol. The
curves in the upper frame represent the fractions of the problem
restraints properly tagged during the refinement. The curves in the
lower frame represent the fractions of the good restraints incor-
rectly tagged as problem restraints. All data are averages over 100
separate simulations with different randomly chosen problem re-
straints.Kr = 20.0 kcal/mol for these simulations. Solid lines: runs
using standard refinement (Equation 11); dashed lines: run using
time-averaged refinement (Equation 12).

improper tag rate, the proper tag rate decreases even
more quickly (not shown). For example, if we look
at only the five largest contributions to the restraint
penalty, the proper tag rate decreases to between 0.10
and 0.23, for values ofTerr between 0.25 and 4.0 Å.

It is interesting to ask how the presence of bad
restraints affects the final averaged refined structures.
To answer this question, averaged structures were
generated for each simulation in both the MD and FIN-
GAR.RWF suites. In the case of MD, the mean struc-
ture for each run was generated by first superimposing
on the initial structure the snapshot conformation at
every picosecond (discarding the first 40 ps, to allow
for equilibration and thermalization) and then averag-
ing. For FINGAR.RWF, the refined basis set weights
at the end of each simulation were used to create a
weighted archive file, then the structures in the archive
file were superimposed on the the initial conforma-
tion and averaged. After each averaged structure was
generated, it was superimposed on a target ‘correct’
averaged structure that had been determined from a
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Figure 6. Ensemble averaged rms deviations (Å) from the ‘correct’
structure for FINGAR and MD-based refinements, as a function
of magnitude (Å) of the error in the problem simulations. All re-
finements are of FK506 using the NMR-derived set of 66 distance
restraints. Each plotted value corresponds to a suite of 100 separate
simulations, each with a randomly chosen set of 5 restraints to which
the given error−Terr has been applied. The final average refined
structure for each of the 100 simulations in a suite is determined and
the rms deviation between this average and the ‘correct’ average (re-
fined average with no errors applied to the restraint set) is calculated.
The average of these 100 rms values gives the value that is plotted in
Figure 6. Thin solid line: FINGAR refinement, no restraint weight
floating; thick solid line: FINGAR.RWF refinement; thin dashed
line: standard MD refinement; thick dashed line: time-averaged MD
refinement.

refinement where no errors were introduced into the
restraint set. The target structure for the MD refine-
ments was generated from a MD refinement (standard
or time-averaged, depending on the run), while the
target structure for the FINGAR.RWF simulations
was generated from a FINGAR refinement. The root-
mean-squared (rms) difference between the averaged
structure and the target structure was determined for
each refinement in a suite, and these rms values were
averaged to give an mean rms difference for that suite.

These mean rms differences are plotted in Fig-
ure 6. The thin solid line represents FINGAR runs
where no restraint weight floating was allowed; the
thick solid line represents FINGAR.RWF runs with re-
straint weight floating; the thin dashed line represents
standard MD; and the thick dashed line represents
time-averaged MD. From this plot it is clear that
the MD refined structures are in appreciably worse
agreement with the correct structures than are the FIN-
GAR refined structures. It can also be seen that the
deviations of the averaged structures from the FIN-
GAR.RWF runs are essentially invariant withTerr.
This is to be expected if the method is correctly identi-

fying and effectively eliminating these restraints. The
modest∼0.2 Å rms difference between the refined
structures and the ‘correct’ structures reflects the fact
that when we eliminate bad restraints during a single
FINGAR.RWF run, they are not replaced by the cor-
rect ones. The replacement must be done by the user
‘by hand’. Therefore, potentially valuable information
has, in fact, been removed from the restraint set and
the resulting structure may be somewhat different than
if these restraints, without errors, had been included.

This same explanation applies to the question of
why the FINGAR refinement without restraint weight
floating actually results in somewhat lower rms devia-
tions from the ‘correct’ structure for small values of
Terr. Even a restraint that is somewhat in error can
impart important information to the refinement. Obvi-
ously, if the error is too large, the effect on refinement
will be detrimental. But if the error is small, it may
be more valuable to keep the restraint than to simply
remove it. Note that this is not a problem with the
FINGAR.RWF refinement method; flagging restraints
during FINGAR.RWF is a way of identifying bad re-
straints, not a way of generating the final solution. The
user should intervene once the bad restraints have been
tagged and fix or remove them, as warranted. Once
the user is satisfied that all bad restraints have been
fixed and/or permanently removed from the set, then
final refinement without restraint weight floating can
proceed.

Discussion

It is clear from the results present herein that FIN-
GAR.RWF is very capable of flagging problem re-
straints in a dataset. For a well-defined set of double-
sided restraints, the method is able to flag problem
restraints with a success rate approaching 90% for er-
rors of moderate magnitude (1.0 Å), and with a success
rate of essentially 100% for larger errors (2.0 Å). For
real data, using more error-forgiving single-sided re-
straints, the method is still quite able to find problem
restraints, with the success rate proportional to the
magnitude of the inherent error. The ability to flag
problem restraints must be balanced with an attempt
to minimize the number of correct restraints tagged as
problematic. In all cases, the ability of FINGAR.RWF
to reliably flag bad restraints is superior to that of
traditional MD approaches.

By reducingKksumandKkzer we can make it eas-
ier for refined restraint weights to decrease, thereby
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increasing the chances of tagging problem restraints.
But this will also increase the chances of improperly
tagging restraints which are not in error: in the absence
of the penalty functions defined by Equations 8 and 9,
the natural tendency would be for all restraint weights
to decrease, since the restraint term always makes a
positive/unfavorable contribution to the total energy.
The most appropriate values ofKksum, Kkzer andS0
will likely depend on the quality of the restraint set
being examined. Improperly tagged restraints are not a
problem, per se, but the user will have to examine both
the correctly and incorrectly tagged restraints after the
simulation. As the correct/incorrect ratio decreases,
the amount of time required in this post simulation
analysis increases.

It should be noted that the ‘failure’ of FIN-
GAR.RWF to flag 100% of the problem restraints
arises not from a failure of the GA global optimiza-
tion method. Rather, this is due to the availability
of solutions to the optimization that give equivalently
low values for the target functionEtot, but that do not
require the elimination of certain problem restraints.
This can be seen by reference to Figure 4, where
despite a 20–80% hit rate for problem restraints, de-
pending onTerr, Etot is nearly constant. In practice,
this suggests that FINGAR.RWF should have no dif-
ficulty in isolating restraints that – if not removed –
would have the greatest influence in misdirecting the
results of the refinement.

The importance of FINGAR.RWF is in quickly
identifying and correcting problem restraints in an
experimentally-derived set of data. As such, it is not
critically important that every bad restraint be iden-
tified in a single FINGAR.RWF simulation. Rather,
it is expected that FINGAR.RWF may be run several
times. In the first, the worst restraints will be found
and corrected. Then the program can be re-run to de-
termine if there are other bad restraints still in the data
set. FINGAR.RWF can be re-run in such an iterative
fashion until the user is satisfied the data set contains
no restraints that are unduly affecting the results of
the refinement. Once the user is satisfied that the re-
straint set is correct, final refinement is run using either
FINGAR without restraint weight floating or MD.

The FINGAR.RWF method (and FINGAR itself)
is general, and in principle should be applicable to
any system. However, to user FINGAR, it is neces-
sary that one be able to generate a representative set of
basis structures containing all the important conform-
ers. While this is generally a straightforward task for
small molecules, it presents a more difficult problem

for large molecules such as proteins. Additional work
will likely be necessary to derive methods for generat-
ing the necessary basis sets in these cases. This caveat
applies to determining of the structure of the large
molecule itself. The structure of a small molecule
bound to a larger, relatively fixed molecule (such as
a ligand bound to a protein) should in general present
no challenges beyond those of the system described
herein.

It is interesting to consider the complementarity
between the FINGAR.RWF approach and the recently
described ‘self correcting distance geometry’ (SCDG)
method (Hanggi and Braun, 1994). SCDG is an in-
teractive approach to detecting inconsistent distance
constraints during a distance geometry run. Each it-
eration of the SCDG approach consists of generating
an ensemble of DG structures. Restraint violations in
this ensemble are determined, and restraints that are
violated a large percentage of the time are modified.
The process is re-run several times until a restraint set
is evolved that can be reasonably satisfied by a DG
ensemble. This search for bad restraints is iterative
and is not based on a more global optimization method
like GA, so solutions far from the starting point (e.g.
where several constraints that affect the same part of
the molecule must be changed to achieve the proper
answer) may be missed. Otherwise, SCDG is charac-
terized by the same strengths and weaknesses as stan-
dard DG. Namely, DG is extremely fast and capable
of generating structures that satisfy a set of distance
constraints, but DG accounts for potential energy in
only a very crude manner. Therefore, one is likely
to identify misassigned constrants that are very geo-
metrically inconsistent with the remainder of the data
set, but not those that may be geometrically feasible
but energetically unlikely. So the strength of SCDG
will be in such tasks as cleaning up restraints derived
from automated assignment or homology modeling
(Mumenthaler and Braun, 1995a,b). Fine tuning the
restraint set and finding restraints that are geometri-
cally possible but energetically implausible will still
need to be performed by a more sensitive energy-based
method like FINGAR.RWF.

Ultimately, proof of the value of FINGAR.RWF
must come from applications to real experimental
data. In a recent study (Fejzo et al., 1999), FIN-
GAR.RWF was used to analyze an experimentally
derived NOE data set for protein-bound SLB506, an
acyclic derivative of the FK506 macrocycle that binds
to the FKBP protein. Initial refinement results in that
study were unsatisfactory, as they yielded structures
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with numerous modest restraint violations, and rela-
tively large associated potential energies. Inspection of
the results did not indicate any specific restraints that
might be responsible for the unsatisfactory restraint
violations and energies. FINGAR.RWF was applied
and quickly identified the two misassigned restraints
that were responsible for the problematic results. Once
these restraints were corrected, refinement proceeded
smoothly, yielding an excellent rms restraint violation
along with a low potential energy.

In all, FINGAR.RWF appears to be a powerful
new tool for decreasing the time and effort required
to go from an initial set of NMR-derived distance
assignments to a final refined structure.
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